
Journal of Applied Mathematics and Mechanics 73 (2009) 8–15

Contents lists available at ScienceDirect

Journal of Applied Mathematics and Mechanics

journa l homepage: www.e lsev ier .com/ locate / jappmathmech

The dynamics of an omni-mobile vehicle�

A.A. Zobova, Ya.V. Tatarinov
Moscow, Russia

a r t i c l e i n f o

Article history:
Received 15 January 2008

a b s t r a c t

The motion of an omni-mobile vehicle on a horizontal plane is considered. The wheels are modelled by
absolutely rigid discs. Slippage in a certain direction, which makes a constant non- zero angle with the
plane of a disc, is possible at the contact point of a wheel and the plane, and the planes of the discs
are fixed with respect to the platform of the vehicle. The dynamic equations of motion are obtained for
vehicles of this type with an arbitrary number and arrangement of the wheels. A complete qualitative
description of the inertial motion of a vehicle is given (there are no control actions and it is assumed that
there is no friction in the axes). The result is presented in the form of a phase portrait of the system. The
motion of a vehicle is then considered in the case when control moments are applied to the axes of the
wheels. The stability and branching of a certain class of steady motions of the vehicle are investigated.
The domain of parameters is separated out where Andronov-Hopf bifurcation occurs with the formation
of unstable limit cycles.

© 2009 Elsevier Ltd. All rights reserved.

Omni-wheels were developed to construct manœuvrable means of transport (such as, for example, mobile robots and wheelchairs).
Several rollers are fixed onto the periphery of the disc of such a wheel, so that only one of the rollers is able to contact the supporting
surface and this roller can freely rotate about a certain fixed axis in the disc of the wheel. The axis of rotation of the roller is directed
either along the tangent of the periphery of the disc (an omni-wheel) or it is turned around the radius of the disc at an angle of 45◦ (a
mecanum-wheel). This construction enables a wheel, supported on a roller and maintaining the orientation of its plane, to move easily
along a straight line at a fixed non-zero angle to the plane of the wheel. A practical approach to the design of vehicles with such wheels
has been thoroughly developed by foreign authors (see, for example, Refs 1 and 2 and the bibliography in these papers). The motion (both
free and controlled) of a vehicle with roller-carrying wheels of a certain specific construction has been studied in Ref. 3. The equations
of the free and controlled motions of an arbitrarily configured vehicle on a horizontal plane are obtained and analysed below using the
methods of analytical mechanics and stability theory. A concise method of obtaining the equations of motion for mechanical systems with
non-holonomic constraints, proposed earlier in Refs 4 and 5, is also described in detail.

1. Formulation of the problem

Consider the motion of an omni-mobile vehicle of mass M with N roller-carrying wheels of radius R over a rough horizontal plane OXY
(further, we assume that the dimensionally independent quantities M and R are equal to unity). The planes of the wheels are vertical and
they are fixed with respect to the platform of the vehicle. Suppose Q is a certain fixed point of the vehicle, S is the centre of mass of the
vehicle and QS = �. We now introduce the vectors e� and e� in the following manner (Fig. 1): e� = −→

QS/|QS|, e� ⊥ e�, |e�| = |e�| = 1 (without
loss of generality, we will assume that the vectors e� and e� are horizontal). The angle between the vector e� and the OX axis is denoted by
�. The position of the vehicle is completely determined by the x and y coordinates of the centre of mass in the OXY plane, the angle � and
the angle �i (i = 1, . . ., N) of the proper rotation of the wheels.

The following constraints are imposed on the system: the direction of the velocity of the lowest point of each disc, which simulates a
roller-carrying wheel, is at a certain constant angle to the plane of the wheel (this velocity is actually directed perpendicularly to the axis of
the roller on which the wheel leans at a given instant). In order to obtain the equations of these constraints, we will introduce the following
notation (see Fig. 1). Suppose ei is a unit vector which leaves from the point Q and is directed into the centre of the i-th wheel Pi (henceforth
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Fig. 1.

i ∈ {1, . . ., N}, k ∈ {1, . . ., 3 + N}, s, s′ ∈ {1, 2, 3} and repeated indices under a summation sign run through the above mentioned sets), and e⊥
i

is a vector which is perpendicular to it. We will denote the angle between the vectors e� and ei by �i and the angle between the Q� axis and
the perpendicular ni to the plane of the wheel by �i. Suppose �i is the distance between the points Q and Pi and 	i is a horizontal vector
which is tangential to the plane of the wheel. Suppose oi is a vector corresponding to the direction of the axis of a roller and 
i is the angle
between the vectors oi and ni. For omni-wheels, the angle 
i is equal to �/2 and, for mecanum-wheels, 
i = �/4.

We now introduce the pseudovelocities �1 and �2 as the projections of the velocity of the centre of mass on the vectors e� and e�. Then,

(1.1)

The velocity vi of the lowest point of the i-th wheel

(1.2)

is perpendicular to the vector oi. Hence, the equations of the constraints have the form

2. The equations of inertial motion and their analysis

We will now consider the inertial motion of the vehicle, that is, we will assume that, apart from the ideal reactions of the constraints,
only a gravitational force acts on the system. In order to derive the equations of motion, we will make use of the concise form proposed
earlier.4,5 To do this, we will first write out the expression for the kinetic energy

Here, �2 is the total moment of inertia with respect to the vertical axis passing through the point S and 
2 is the moment of inertia of each
wheel with respect to the ni axis (they are assumed to be identical). We now introduce the pseudovelocity

(2.1)

Thus, constraints which, in matrix form, can be written in the following manner

(2.2)

are imposed on the mechanical system, the position of which is given by the coordinates {qk}≡ {x, y, �, �1, �2, . . ., �N} with Lagrangian
L = T (the potential energy of the gravity force does not vary since the vehicle moves along a horizontal plane).

We denote the coefficients of the pseudovelocities �s in the sum �pkq̇k when account is taken of relations (1.1), (2.1) and (2.2) by Ps.
They have the form
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Here, {pk} ≡ {px, py, p�, p1
�, . . . , pN

� } are the formal canonical momenta, that is, the variables which, in conjunction with qk, enable us to
calculate the Poisson bracket.

The equations of motion can be written in the form

Here, L* = �TA�/2 is the Lagrangian after substitution of the constraints, �T = (�1, �2, �3) is the three-dimensional pseudovelocity vector and
the matrix A = E + 
2 �T�.

Note that {Ps, L*}= 0 and we then find

Now, instead of px, py, we substitute the generally known expressions px = ∂T/∂ẋ = ẋ, py = ∂T/∂ẏ = ẏ and take relation (1.1) into account.
We obtain that

Consequently, the dynamic equations take the form

and they can be written in matrix form as follows:

(2.3)

The system admits of an energy integral T* ≡ const and a linear integral ∂T*/∂�3 ≡ const and, also, an invariant measure � = |�3|−1d�1 ∧
d�2 ∧ d�3. In the space of the pseudovelocities �1, �2, �3, the trajectories of the system lie in a section of the ellipsoid �A�T = 2h = const,
which is the level of the energy integral and the plane of the line integral, by ∂T*/∂�3 ≡ const.

We will now consider a three-wheeled vehicle with the following geometry (Fig. 2):

Fig. 2.



A.A. Zobova, Ya.V. Tatarinov / Journal of Applied Mathematics and Mechanics 73 (2009) 8–15 11

The matrices � and A then have the form

Note that � (apart from a positive factor) is the distance from the front wheel to the centre of mass of the system. In this case, the
equations of motion take the form

(2.4)

We will assume that � /= 0 and fix a certain level of the linear integral −��1 + �3 = K = const of this system. The projections of the phase
trajectories of system (2.4) lying in the plane of the linear integral are described in the (�3, �2) plane by the system of equations

(2.5)

In the (�3, �2) plane, the trajectories of the system with a different energy h belong to concentric ellipses with their centre on the �2 = 0
axis (the phase portrait is shown in Fig. 3, a). The centre of the ellipses �2 = 0, �3 = −K corresponds to steady rotation of the vehicle about
the vertical axis passing through the centre of mass (�1 ≡ 0, �2 ≡ 0, �̇ ≡ const, x ≡ x0, y ≡ y0). The special line �3 = 0 corresponds to the
steady rectilinear motion of the vehicle (the angle � is constant during the motion and the axis of symmetry does not have to be parallel
to the path). Analysis of Eqs (2.5) shows that, in the half-space �3 > 0, motion along the ellipses occurs in a clockwise direction and, in the
half-space �3 < 0, in an anticlockwise direction. It then follows that the steady rectilinear motions (�2 = const, �3 = 0) are stable when �2 < 0
and unstable when �2 > 0 (here, we have in mind stability with respect to part of the variables, with respect to the pseudovelocities �s

and the modulus of the velocity of the centre of mass (ẋ2 + ẏ2)
1/2

). The physical meaning of this condition lies in the fact that a rectilinear
motion is stable if and only if the centre of mass is located behind the axis of the parallel wheels. It is interesting to note that, in the case of
the inertial motion of another model of a mobile vehicle with conventional wheels,6 the condition for the stability of the steady rectilinear
motions of the vehicle has exactly the opposite meaning.

The motion of the vehicle that corresponds to periodic motions of a representative point along the ellipses is as follows: the centre of
mass describes a multipetal-shaped curve and, at the same time, the platform rotates about a vertical axis in a certain constant direction.
The motions of the vehicle that correspond to aperiodic (asymptotic) motions (that is, high energy motions) is as follows: when t → ∞, the
motion of the vehicle tends asymptotically to steady rectilinear motion.

We will now consider the case when � = 0. In this case, the matrix A is diagonal and any motion of the vehicle occurs at a constant
angular velocity �̇ = � = const. The energy integral has the form A1�2

1 + A2�2
2 = const; the centre of mass describes a multipetal-shaped

curve on the supporting plane and, after each period 2��−1
√

A1A2, identical segments (petals) are passed over but they are rotated with
respect to one another by a certain angle. In the case of the inertial motion of a vehicle of another construction3 (the wheels carrying rollers
are arranged at the vertices of a regular triangle and orientated perpendicular to the bisectrices of the corresponding angles), the matrix A
is diagonal and, moreover, A1 = A2. It has been shown3 that, in this case, the motion of the vehicle when � /= 0 is a cylindrical precession:
the centre of mass moves uniformly along a circle and the platform rotates uniformly around the vertical axis passing through the centre
of mass; if � = 0, the vehicle moves uniformly and rectilinearly.

Note that, in system (2.3) with an arbitrary symmetry of the positive-definite matrix A = ||ars||, two types of steady motions also exist:
uniform rotations �1 ≡ 0, �2 ≡ 0, �3 = �0

3 and uniform rectilinear motions �1 = �0
1, �1 = �0

2, �3 = 0. Considering the stability of the recti-
linear motions with respect to part of the variables, in the first approximation, we obtain the following result: the necessary condition for

Fig. 3.
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the rectilinear motion to be stable is the inequality

The projections of the phase trajectories onto the (�3, �2) plane in the case when the off-diagonal elements a12, a23 in the matrix A are
non-zero are shown in Fig. 3, b.

3. The equations of controlled motions

We will now consider the controlled motion of the vehicle. Suppose control moments Mi = (c1Ui − c2�̇i)ni, where Ui are the control
voltages, are applied to the wheels from the body. Such a description of drives with dc motors is generally accepted in the treatment of the
dynamics of controlled vehicles (see Ref. 6).

Adding the generalized forces corresponding to the control moments to the right-hand sides of Eqs (2.3), we write the equations of the
controlled motions

These equations can be simplified by introducing the linear change with constant coefficients of the control parameters

and the dimensionless time 	 = c2t. We obtain

Here w1, w2, w3 are the new control parameters and a derivative with respect to the new time is denoted by a dot.
For the vehicle shown in Fig. 2, the equations of the controlled motions take the form

(3.1)

4. Steady controlled motions

Following the approach described earlier,7 we consider the critical points of system (3.1)

for constant controls. The steady motions (SM) of the vehicle in a plane correspond to critical points. The equations of the SM have the form

(4.1)

For each fixed set w, from one to three steady motions of the vehicle exist.
In the neighbourhood of the SM �1 = p1 + �p1, �2 = p2 + �p2, �3 = �(� + ��), the dynamic equations can be linearized:

(4.2)

In this equation, the values of p1, p2, � must be expressed in terms of the parameters w1, w2, w3 from Eqs (4.1).
We will now consider those values of the control parameters for which a rectilinear SM �̇1 = −�̇3 is possible (the parallel wheels rotate

uniformly in one direction). The control voltages must be connected by the relation U1 = −U3, from which it follows that w3 = −�w1 ≡ const.
Then, apart from the rectilinear SMs (p1 = w1, p2 = w2/2, w = 0), rotational SMs also exist: the centre of mass moves along a circle in the
support plane and, at the same time, the vehicle rotates uniformly around a vertical passing through the centre of mass. Here, the constants
p1, p2, � and w1, w2 must interrelated as follows:

These families of motions respectively represent a straight line and a parabola in the bifurcation diagram (w2, �) (Fig. 4). The branches of
the parabola are directed to the right and its vertex is located at the point
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Fig. 4.

Analysis of the characteristic polynomial of Eqs (4.2) for the rectilinear motions gives the condition for the asymptotic stability of these
motions 4��2 − �w2 > 0. It follows from this condition that a motion for which the projection of the velocity of the centre of mass on the
Q� axis does not exceed a certain magnitude �2 ≡ p2 = w2/2 < 2��2/� will be asymptotically stable (they are labelled with a plus sign).
The remaining rectilinear motions are asymptotically unstable (they are labelled with a minus sign).

We will now investigate the stability of the rotational SMs. The characteristic equation of system (4.2) in their neighbourhood has the
form

Hence, when � = 0 and � = �0, the real root of the characteristic equation changes sign and, consequently, so does the nature of the stability.
Analysis of the expression � = M1M2 − M0M3 shows that values of the inertial and geometric parameters exist for which � < 0 in a certain
domain (−∞, �−) ∪ (�+, +∞) and, � ≥ 0 in the complement of the above mentioned domain (at the same time, (�−, �+) ⊃ (�0, 0)).

We will now consider the type of the bifurcation at the points � = �± when w3 = −�w1 = 0 in greater detail. In this case, the critical
points �± are solutions of the equation

(4.3)

This equation has a solution for the values of the mass-inertia characteristics (
, �, �) that f(
, �, �) < 0. Analysis of the function f(
, �, �)
shows that the maximum dimensionless moment of inertia of a wheel 
max for which slanting SMs can lose stability is less than 0.15.

When w3 = −�w1 = 0, the non-linear system of equations of a motion which has been perturbed in the neighbourhood of � = �±, has
the form

By the change of variables

this system can be reduced to the canonical form
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Fig. 5.

The coefficients of the change of variable �ss′ and the coefficients of the characteristic equation M1 and M2 are only constructed using the
linear part of the perturbation equation (see Ref. 8) and therefore depend on �±, 
2, �2, �2. Since �± is the solution of Eq. (4.3), �ss′ , M1, M2
only depend on the parameters 
2, �2, �2 (and are independent of the parameter �). The parameter � occurs in the functions Qs, which
are quadratic in �s, as follows:

The first Lyapunov coefficient L1 is a homogeneous quadratic form of the coefficients of the functions Qi and the sign of L1 is therefore
independent of the magnitude of �. Hence, we obtain that the qualitative bifurcation pattern when � = �± is independent of the magnitude
of �.

So, when w3 = −�w1 = 0, it is possible to construct two domains in the (
, �, �) parameter space and there are qualitative differences
in the behaviour of the system in these two domains. In domain I, the rotational SMs are always stable (critical values of �± do not exist)
and, in domain II, the unstable limit cycles collapse to rotational SMs when w2 is increased (the results of calculations show that L1 > 0 in
the whole of the domain f(
, �, �) < 0 and, for this �, the sign changes from plus to minus on passing through the critical value of w2). The
characteristic form of the domains I and II in a section of the parameter space with the planes � = r cos �, � = r sin �, � = const is
shown in Fig. 5 (the plane � = �/4 is shown and domain II is hatched).
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